

SPECIFICATION SHEET

SMD CAPACITORS ALUMINUM ELECTROLYTIC FZ SERIES

SPECIFICATION SHEET NO.	S0228- FZ106M050HEHTA					
SPECIFICATION SHEET NO.						
ORIGINAL MFG/PART NO	Aillen Capacitors/CAE106	5M1HHFZEE7TRC				
NEXTGEN PART CODE	FZ106M050HEHTA	Indicate This Code For <u>RFQ/</u> Order				
DATE	Feb. 28, 2025					
REVISION	A2 Updated With Most Recent Data					
DESCRIPTION AND	SMD Capacitors Aluminu	m Electrolytic (CAE), FZ series, 2 pads				
MAIN PARAMETRICS	Wide Temperature and L	ow Impedance type				
	Capacitance: 10µF, Toler	ance ±20%, Voltage 50V				
	Case size: ØD6.30*L5.70	mm, Impedance (mΩ/20°C,100KHz): 0.88Ω Max.				
	Ripple Current (mA r.m.s	/@+105°C, 100KHz): 165mA Max.				
	Lifetime @105°C: 2000 ⊢	lours Operating Temp. Range -55°C ~+105°C				
	Package in Tape/Reel, 10	00pcs/Reel				
	REACH/RoHS/RoHS III Co	mpliant & Halogen Free				
CUSTOMER						
CUSTOMER PART NUMBER						
CROSS REF. PART NUMBER						
MEMO						

VENDOR APPROVE Issued/Checked/Approved Date: Feb. 28, 2025

CUSTOMER APPROVE
Date:

2/28/2025

MAIN FEATURE

- Aluminum Electrolytic Capacitors Foil Type, Radial, Can SMD
- Wide Temperature And Low Impedance Type
- High Stability And Reliability and Designed Capacitors Quality Meets IEC60384
- Operating Temperature Range: -55~+105°C
- Available For High Density Surface Mounting
- Rated Voltage Range from 6.3V to 100V
- Offer Quality Alternatives Parts For Major Brand KEMET/CHEMI-CON/NICHICON/
 - **RUBYCON** and more
- Moisture Sensitivity Level (MSL) 1 (Unlimited)
- REACH/RoHS/RoHS III Compliant & Halogen Free

MAIN APPLICATION

- High-density Patch Assembly Electronic Circuit: Power Supply, Lighting, etc
- Industrial Equipment: Routers, Switches, Measuring Instruments, etc.
- Consumption Type Equipment: Amplifying Circuit Of Intelligent Loudspeaker,

Smoothing Circuit, LED Lamp, etc.

ELECTRICAL CHARACTERISTICS

- See Page 8 ~Pag3 9 For Different Part Number.
- All Products Parameters are Subject To NextGen Components' Final Confirmation.

Image shown is a representation only. Exact specifications should be obtained from the product dimension.

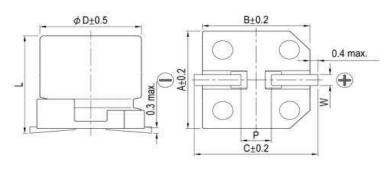
HOW TO ORDER

• Please Follow Up Part Code Guide And Indicate NextGen Part Code <u>FZ106M050HEHTA</u> For RFQ/Order.

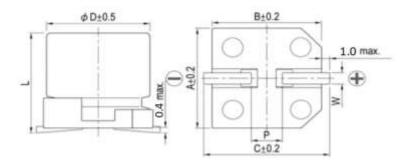
PART CODE GUIDE

CODE	NAME	KEY SPECIFICATION OPTION
FZ	Product Index	Capacitors Aluminum Electrolytic, V-Chip Type, Original Series Number CDFZ
106	Rated Capacitance	475: 4.7μF; 106: 10μF; 156: 15μF; 226: 22μF; 276: 27μF; 336: 33μF 476: 47μF; 566: 56μF; 686: 68μF; 107: 100μF; 157: 150μF; 227: 220μF 337: 330μF; 477: 470μF; 687: 680μF; 108: 1000μF; 158: 1500μF 228: 2200μF; 338: 3300μF
м	Capacitance Tolerance	M: ±20%; V: -10% ~ +20%
050	Rated Voltage	6V3: 6.3V; 010: 10V; 016:16V; 025: 25V; 035: 35V; 050: 50V; 063: 63V 080: 80V; 100: 100V
н	Environmental Requirements	R: RoHS III Complaint; H: RoHS III Complaint & Halogen Free
E	Case Diameter	B: ØD3.0mm; C: ØD4.0mm; D: ØD5.0mm; E: ØD6.3mm; F: ØD8.0mm; G: ØD10.0mm; K: ØD16mm; L: ØD18mm; P: ØD12.5mm
н	Case Length	H: L5.7mm; l: L6.5mm; J: L7.7mm; K: L10.5mm; L: L11.5mm; M: L12.5mm; N: L13.5mm
т	Package	T: Tape and Reel
A	Internal Control Code	Letter A~Z, a~z or digits (0~9)
XX	Suffix	Blank: N/A XX: Letter A~Z, a~z or digits (0~9) for Special/Custom Parameters

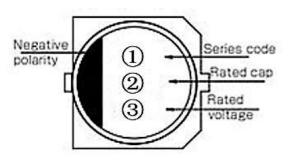
2/28/2025


DIMENSION (Unit: mm)

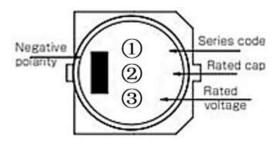
Ø4 ~ Ø6.3 Non explosion proof valve,


 $Ø8 \sim Ø10$ Explosion proof valve

Ø4~Ø10

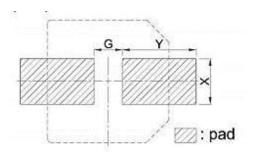

Size	Ø4	Ø5	Ø6.3	Ø6.3	Ø8	Ø8	Ø10	Ø10	Ø12.5
Case L	5.7	5.7	5.7	7.7	6.5	10.5	10.5	13.5	13.5
Tolerance @ L	-0.3/+0.5	-0.3/+0.5	-0.3/+0.5	-0.3/+0.5	-0.3/+0.5	±0.5	±0.5	±0.5	±0.5
А	4.3	5.3	6.6	6.6	8.3	8.3	10.3	10.3	13.0
В	4.3	5.3	6.6	6.6	8.3	8.3	10.3	10.3	13.0
С	5.1	6.0	7.2	7.2	9.2	9.2	11.2	11.2	14.0
Р	1.0±0.2	1.5±0.2	2.1±0.2	2.1±0.2	3.1±0.2	3.1±0.2	4.5±0.2	4.5±0.2	4.4±0.2
W	0.5~0.8	0.5~0.8	0.5~0.8	0.5~0.8	0.8~1.1	0.7~1.2	0.7~1.3	0.7~1.3	1.1~1.4

2/28/2025



MARKING – FOR DIFFERENT GUIDE

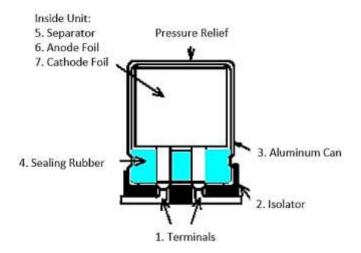
DØ ≤10mm



DØ ≥2.5mm

SYMBOL	NAME
1	Series Code
2	Rated Capacitance
3	Rated Voltage

RECOMMENDED LAND PATTERN (Unit: mm)


DIAMETER SIZE	x	Y	G
DØ4	1.6	2.6	1.0
DØ5	1.6	3.0	1.4
DØ6.3	1.6	3.5	1.9
DØ8	2.5	3.5	3.0
DØ10	2.5	4.0	4.0
DØ12.5	3.2	6.0	4.0

2/28/2025

NextGen Components, Inc.

CONSTRUCTION – FOR REFERENCE ONLY

NO.	PARTS	MATERIAL				
1	Terminal	Tinned Copper – Clad Steel Wire (Pb Free)				
2	Isolator	Thermo-plastic resin				
3	Aluminum Can	Aluminum				
4	Sealing Rubber	Synthetic rubber				
5	Separator	Manila hemp				
6	Anode Foil	High purity aluminum foil				
7	Cathode Foil	Aluminum foil				

SMD CAPACITORS ALUMINUM ELECTROLYTIC FZ SERIES

GENERAL ELECTRICAL CHARACTERISTICS – FOR DIFFERENT PART CODE

PARAMETER	UNITS	VALUE
Operating Junction Temperature Range	°C	-55 ~ +105
Storage Temperature Range	°C	-55 ~ +150

FREQUENCY COEFFICIENT OF ALLOWABLE RIPPLE CURRENT

FREQUENCY F(Hz)		100≤F < 1K 1K≤F < 10K		10K≤F < 100K	100K≤F
	C≤33	0.35	0.70	0.90	1.00
Coefficient C(μF)	33 < C≤150	0.45	0.85	0.92	1.00
	150 < C		0.85	0.95	1.00

TEMPERATURE COEFFICIENT

AMBIENT TEMPERATURE (°C)	105	85	≤70
Coefficient	1	1.5	2

SMD CAPACITORS ALUMINUM ELECTROLYTIC FZ SERIES

ELECTRICAL CHARACTERISTICS - Ta = 25°C, FOR DIFFERENT PART CODE

NEXTGEN	RATE	CAPACITOR	MAX.	MAX.	MAX. RIPPLE	LOAD	CASE
PART CODE	VOL.	VALUE	LEAKAGE	IMPEDANCE	CURRENT	LIFE	SIZE
			CURRENT	@20 °C	@ 105°C		ØDXL
				100KHZ	100KHZ		
	V	μF	μΑ	Ω	mA r.m.s	Hours	mm
FZ477M6V3HFKTA	6.3	470	29.61	0.17	450	5000	8x10.5
FZ477M6V3HFKTB	6.3	470	29.61	0.16	600	5000	8x10.5
FZ108M010HGKTA	10	1000	100	0.09	850	5000	10x10.5
FZ108M010HGKTB	10	1000	100	0.08	850	5000	10x10.5
FZ477M016HFKTA	16	470	75.2	0.17	450	5000	8x10.5
FZ337M025HGKTA	25	330	82.5	0.09	670	5000	10x10.2
FZ337M025HFKTA	25	330	82.5	0.17	450	5000	8x10.5
FZ337M025HFKTB	25	330	82.5	0.16	600	5000	8x10.5
FZ477M025HGKTA	25	470	117.5	0.09	670	5000	10x10.5
FZ477M025HGKTB	25	470	117.5	0.09	850	5000	10x10.5
FZ108M025HPNTA	25	1000	250	0.07	820	5000	12.5x13.5
FZ108M025HPNTB	25	1000	250	0.06	1100	5000	12.5x13.5
FZ226M035HDHTA	35	22	7.7	0.8	150	2000	5x5.7
FZ226M035HEHTA	35	22	7.7	0.8	150	2000	6.3x5.7
FZ226M035HEHTB	35	22	7.7	0.44	230	2000	6.3x5.7
FZ476M035HFITA	35	47	16.45	0.44	230	3000	8x6.5
FZ105M050HCHTA	50	1	3.0	2.9	60	2000	4x5.7
FZ106M050HEHTA	50	10	5	0.88	165	2000	6.3x5.7
FZ106M050HDHTB	50	10	5	1.52	85	2000	5x5.7
FZ107M050HFKTA	50	100	50	0.34	360	5000	8x10.5

2/28/2025

NextGen Components, Inc.

SMD CAPACITORS ALUMINUM ELECTROLYTIC FZ SERIES

ELECTRICAL CHARACTERISTICS - Ta = 25°C, FOR DIFFERENT PART CODE

NEXTGEN	RATE	CAPACITOR	MAX.	MAX.	MAX. RIPPLE	LOAD	CASE
PART CODE	VOL.	VALUE	LEAKAGE	IMPEDANCE	CURRENT	LIFE	SIZE
			CURRENT	@20 °C	@ 105°C		ØD X L
				100KHZ	100KHZ		
	V	μF	μΑ	Ω	mA r.m.s	Hours	mm
FZ476M050HEJTA	50	47	23.5	0.68	185	3000	6.3x7.7
FZ476M050HEJTB	50	47	23.5	0.68	195	3000	6.3x7.7
FZ476M050HFITA	50	47	23.5	0.68	185	3000	8x6.5
FZ476M050HFITB	50	47	23.5	0.68	195	3000	8x6.5
FZ227M050HGKTA	50	220	110	0.18	670	5000	10x10.5
FZ337M050HPNTA	50	330	165	0.12	900	5000	12.5x13.5
FZ475M063HDHTA	63	4.7	3.0	2.9	60	2000	5x5.7
FZ476M063HFKTA	63	47	29.61	0.65	250	5000	8x10.5

Remark

 Specification are subject to change without notice should a safety or technical concern arise regarding the product, please be sure to contact our sales offices.

2) The sizes in the above table are all standard specifications. If you need custom parameters , please contact us.

2/28/2025

CHARACTERISTICS

Standard Atmospheric Conditions

The standard range of atmospheric conditions for making measurements/test as follows:

Ambient temperature: 15°C to 35°C

Relative humidity: 45% to 85%

Air Pressure: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature: 20 $^\circ$ C \pm 2 $^\circ$ C

Relative humidity: 60% to 70%

Air Pressure: 86kPa to 106kPa

As to the detailed information, please refer to following Table

Operating Temperature Range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage is

-55°C to 105°C.

As to the detailed information, please refer to the mentioned table next pages.

SMD CAPACITORS ALUMINUM ELECTROLYTIC FZ SERIES

ITEM	PERFORM	ANCE					
Nominal Capacitance	<conditio< td=""><td colspan="6"><condition></condition></td></conditio<>	<condition></condition>					
(Tolerance)	Measurin	g Frequency	∙:120Hz±	12Hz			
	Measurin	g Voltage : N	Not more t	han 0.5V:			
	Measurin	g Temperat	ure : 20±3	2°C			
	<criteria< td=""><td>></td><td></td><td></td><td></td><td></td><td></td></criteria<>	>					
	Shall be w	ithin the sp	ecified cap	bacitance	tolerance		
Leakage Current	<conditio< td=""><td>n></td><td></td><td></td><td></td><td></td><td></td></conditio<>	n>					
	After DC \	/oltage is ap	plied to ca	apacitors t	hrough th	e series p	rotective resistor
	(1kΩ±10	Ω) so that t	erminal vo	ltage may	reach the	reacted u	use voltage. The leakage
	current w	hen measur	ed in 2 mi	nutes shal	ll not exce	ed the val	lues of the following
	equation.						
	<criteria></criteria>	>					
	I (μA) ≤ 0	.01 CV or 3	(µA), Whi	chever is g	reater		
	I: Leakage	Current (µ/	4)				
	C: Capacit	ance (µF)					
	V: Rated \	Vorking Vol	tage (V)				
tan δ	<conditio< td=""><td>n></td><td></td><td></td><td></td><td></td><td></td></conditio<>	n>					
	See Norm	nal Capacita	nce, for m	easuring f	requency,	voltage a	nd temperature.
	<criteria:< td=""><td>></td><td></td><td></td><td></td><td></td><td></td></criteria:<>	>					
	The tange	nt of the lo	ss angle (ta	an δ) of th	e capacito	ors shall re	efer to the following table.
	Measurer	nents shall l	pe made u	nder the s	ame cond	itions as t	hose given for the
	measuren	nent of the	capacitanc	ce.			
			6.2	10	10	25	1
	W.V.	Cap.(µF)	6.3	10	16	25	-
	tan δ	<1000	0.26	0.22	0.20	0.18	-
		1000	0.28	0.24	0.22	0.20	-
		1500	0.28	0.27	/	/	-
		2200	0.34	0.29	/	/	
	W.V.	Cap.(µF)	35	50	100]	
	tan δ	<330	0.14	0.12	0.14	-	
		330	0.16	0.12	0.18	1	
		470	0.18	0.14	0.18	-	
	Remark: F					oltages.	
2/28/2025	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						

2/28/2025

SMD CAPACITORS ALUMINUM ELECTROLYTIC FZ SERIES

ITEM	PERFORMANCE												
Rated voltage (WV)	W.V. (V.DC)	6.3	10	16	25	35	50	63	80	1	100		
Surge voltage (SV)	S.V. (V.DC.)	7.2	11.5	18.4	28.8	40.2	57.5	72.5	92	1	115		
Temperature	<condition>.</condition>												
Characteristic IEC-	Step.	Testin	g Tempe	rature(°(C)		1	īme					
60384-4 4.12	1		20±2	2		Time to	o reach t	nermal e	equilibr	ium			
	2		-55(-25)	±3		Time to	o reach t	nermal e	equilibr	ium			
	3		20±2	<u>)</u>		Time to reach thermal equilibrium							
	4.		105±	2		Time to reach thermal equilibrium							
	5		20±2	2		Time to	o reach t	nermal e	quilibr	ium			
	 <criteria> At +105°C, capacitance shall be within ±20% of their origin at +20°C, measured capacitance, tan δ shall be within limit of 4.3. The leakage current value at +105°C shall not more than 8 times the specified value. b) At step 5, tan δ shall be within the limit of 4.3. The leakage current value shall not more than the specified value. c) At-55°C (-25°C), impedance (Z) ratio shall not exceed the value of the following table. </criteria> Rated Voltage (V) 6.3 10 16 25 35 50 63 100 Z-25°C/Z+20°C (120Hz) 3 3 3 3 3 3 3 3 d) Capacitance tan δ and impedance shall be measured at 120Hz										105°C all not ng 100 2		
Sealing Tape Reel Strength	<condition Peel angle: Peel speed The peel st</condition 	165 to : 300mr rength	n per mir must be (nutes).1 ~ 0.7 speed: 300r	N unde	er these co	onditions er tape		glued.				

SMD CAPACITORS ALUMINUM ELECTROLYTIC FZ SERIES

ITEM	PERFORMANCE										
Load Life Test	<condition></condition>										
IEC-60384- 4 4.13	The capacitor is stored at a temperature of 105 $^\circ$ C ± 2 with rated voltage applied										
	continuously for 2000Hrs for	r Ø D x L≤6.3x5.7mm;3000 Hrs for 6.3x7.7L &									
	8x6.5L & 10x7.7L;5000 Hrs	for \emptyset D \ge 8mm. Then the product should be tested after									
	16 hours recovering time at	atmospheric conditions. The result should meet the									
	following table:										
	<criteria> The characteristic</criteria>	shall meet the following requirements.									
	Capacitance Change	\pm 30% of initial measured value.									
	tan δ	300% or less of the specified value									
	Leakage current	Not more than the specified value.									
	Appearance	No leakage of electrolyte or swelling of the case. All markings shall be legible									
	Inner construction	No corrosion of tab terminals or electrodes									
Shelf Life Test IEC-60384- 4 4.17	<condition> The capacitors are then stored with no voltage applied at a temperature of 105 ±2°C for 1000+48/0 hours. Following this period the capacitors shall be removed from the test chamber and be allowed to stabilized at room temperature for 4~8 hours. Next they shall be connected to a series limiting resistor(1k±100Ω) with D.C. rated voltage applied for 30min. After which the capacitors shall be discharged, and then, tested the characteristics.</condition>										
	Criteria> The characteristic shall meet the following requirements.										
	Capacitance Change	\pm 30% of initial measured value.									
	tan δ	300% or less of the specified value									
	Leakage current	Not more than 200% of the specified value									
	Appearance	No leakage of electrolyte or swelling of the case. All markings shall be legible									
	Inner construction No corrosion of tab terminals or electrodes										
	Remark:										
	If the capacitors are stored r	nore than 1 year, the leakage current may increase. n about 1 K Ω resistor, if necessary.									

ITEM	PERFORMANCE	PERFORMANCE							
Surge Test IEC-60384- 4 4.9	No. of cycles: 1000cycles E "ON" for 30± Leakage current Capacitance Change tan δ Appearance	P) µF) Test voltage: Surge voltage item 4.4 ach cycles lasts for 6±0.5min 15 s "OFF" for 5±0.5min. Not more than the specified value Within±15% of initial value. Not more than the specified value. There shall be no leakage of electrolyte. tes over voltage at abnormal situation, and not be							
Vibration Test IEC-60384- 4 4.8	25 mm or Capacitance; Dir mutually each for 2 hours(Vibration frequency range Peak to peak amplitude : 1 Sweep rate : 10Hz ~ 55Hz ~ <criteria></criteria>	: 10Hz ~ 55Hz .5mm							

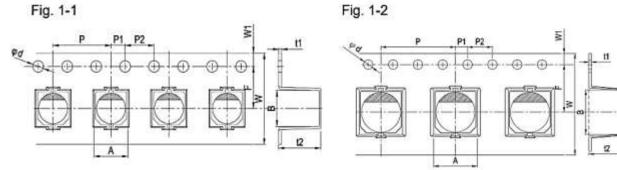
ITEM	PERFORMANCE									
Solderability	<condition></condition>									
Test IEC-60384-4	The capacitor shall be tes	The capacitor shall be tested under the following conditions:								
4.6	Soldering temperature: 2	Soldering temperature: 245°C±3°C								
	Dipping depth: 2mm									
	Dipping speed: 25 \pm 2.5m	nm/s								
	Dipping time: 3 ± 0.5 s									
	<criteria></criteria>	<criteria></criteria>								
	Coating quality	A minimum of 95% of the surface being immersed								
Resistance to	<condition></condition>									
solder heat	After reflow soldering (ite	em 4.18)								
test	The capacitor shall be left at room temperature for before measurement.									
	<criteria></criteria>									
	The characteristic shall meet the following requirements.									
	Leakage current	Not more than the specified value								
	Capacitance Change	Within \pm 10% of initial value.								
	tan δ	Not more than the specified value.								
	Appearance	There shall be no leakage of electrolyte.								
Damp heat test	<condition></condition>									
IEC60384-4	Humidity Test:									
4.12	According to IEC60384-4	No.4.12 methods, capacitor shall								
	be exposed for 1000±8 h	be exposed for 1000±8 hours in an atmosphere of 90~95%R H .at								
	60±3°C, the characteristic change shall meet the following requirement.									
	<criteria></criteria>	<criteria></criteria>								
	Leakage current	Not more than the specified value								
	Capacitance Change	Within \pm 20% of initial value.								
	tan δ	Not more than 120% of the specified value								
	Appearance	There shall be no leakage of electrolyte.								

ITEM	PERFORMANC	E								
Change Of Temperature	<condition></condition>									
Test IEC-60384-4 4.7	Temperature cycle: According to IEC60384-4 No.4.7 methods, capacitor shall be pl									
	in an oven, the condition according as below									
	No.	Temperature	Time							
	1	+25°C	≤3 Minutes							
	2	-55°C	30±2 Minutes							
	3	+25°C	≤3 Minutes							
	4	+105°C	30±2 Minutes							
	5	+25°C	≤3 Minutes							
	1 to 5 = 1 cycle, Total 5 cycles									
	and then the capacitor shall be subjected to standard atmospheric conditions for 4									
	hours, after which measurements shall be made.									
	<criteria></criteria>									
	The characteristic shall meet the following requirements.									
	Capacitance	e Change	Within \pm 10% of initial value.							
	tan δ		Not more than the specified value.							
	Leakage cur	rent	Not more than the specified value.							
	Appearance	2	No broken and undamaged.							
Low Temperature Test	<condition></condition>									
	Condition> Capacitors are placed at -55 \pm 3°C for 96 \pm 4 hours. And then the capacitor shall be									
	subjected to standard atmospheric conditions for 4 hours, after which measurements									
	shall be made.									
	<pre></pre>									
	Leakage cur	rent	Not more than the specified value							
	Capacitance		Within \pm 10% of initial value.							
	tan δ		Not more than the specified value.							
	Appearance	2	No broken and undamaged							

ITEM	PERFORMANCE							
Vent Test IEC-60384-4 4.16	<condition> The following test only apply to those products with vent products at diameter ≥ Ø8 with vent. D.C. test The capacitor is connected with its polarity reversed to a DC power source. Then a current selected from following table is applied. Diameter (mm) DC Current (A) 22.4 or less 1 <criteria> No emission of gas after 30 minutes of the voltage application also meets the</criteria></condition>							
	specification. The vent shall operate with no dangerous conditions such as flames or dispersion of pieces of the capacitor and/or case.							
Mechanical Characteristics Test	<condition> Bending Test: Apply pressure in the direction of the arrow at a rate of about 0.5 mm/s until bent width reaches 2 mm and hold for 60s. The board shall be the test board "B" as specified in JIS C 0051: 2002. If the land area differs, it shall be specified clearly in the next item. Substrate before test before test before test clearly in the next item. Substrate during test clearly in the next item at a rate of about before test before test clearly in the next item. Substrate during test clearly in the next item at a rate of about before test clearly in the next item. Substrate during test clearly in the next item at a rate of about test test clearly in the next item. Substrate clearly in the next item at a rate of about test test test clearly in the next item. Substrate clearly in the next item at a rate of about test test substrate of substrate test clearly in the next item at a rate of about test test substrate of substrate test test on both sides</condition>							
	<criteria> Without mechanical damage such as breaks. Electrical characteristics shall be satisfied. If there are electrodes on both surfaces, above requirements shall be satisfied on whichever surface it may be fixated on.</criteria>							

ITEM	PERFORMANCE	PERFORMANCE										
Reflow Soldering	Welding Method	Reflow Soldering	Soldering Iron	Wave Soldering								
Temperature Profile	The feasibility of	Feasible	Feasible	ls not workable								
	Conditions for the use	Conditions for the use of lead-free reflow soldering.										
	Transformation of the second s											
	1) Methods the follow	-	ratura condition d	uring wolding. If high								
	Reflow soldering: plea temperature is used,											
	reflow soldering cond	-		-								
	slower. It is not neces	-	-									
				oducts of 4 and 10 will be								
	installed in the PCB ov	-										
	2) Precautions for sole		ctors of reflow sol	dering temperature:								
	Product size: The prod											
				is lower than that of PCB								
	3) Reflow soldering											
	If possible, avoid reflo	w soldering twice.										
	If repeated reflux is u	navoidable, measure	and inform the fir	st and second reflux								
	temperature, and the	time of reflow solde	ring									
	4) Please do not 3 tim	es of reflow solderin	g									
	Please follow the follo	wing conditions whe	en soldering tin sol	dering:								
	Soldering iron maxim	um temperature: 35	50±5°C;									
	Welding time: 3+1/-	DS										

ITEM	PERFORMANCE									
Reflow Soldering	Test Method And Peak Temperature Permissible Range									
Temperature Profile	Products category SMD aluminum electrolytic capacitor									
	voltage (V) 4~50 4~50 ≥63 4~100 ≥160									
	Product size $\begin{array}{c c} \Phi 4 - 6. \\ 3 \times 4.5 \\ L \end{array} \Phi 4 - 6.3 \\ \Phi 4 - 6.3 \\ \Phi 8 - 18 \\ 12.5 \end{array} \stackrel{\geq \Phi}{=} \Phi 12.5$									
	TEM (T ₁ -T ₂ , °C) 150-180									
	Preheating Time (t ₁) Max, S 120 180									
	The TEM (T ₃ + C) 230 217 230 217 217 230 217									
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
	The highest TEM (T ₄ · °C) 250 260 250 240									
	temperature Time (t ₃) Max, S 5									
	Return the number $1 \leq 2$									
	 OP-CAP Precautions: Reflow soldering will reduce the rated electrostatic capacity of the product, and it should be confirmed whether reflow soldering condition meets the specification of recommended reflow soldering. Although the actual reflow condition change is still based on the reflow soldering method, please note that the highest temperature and the electrode terminal at the bottom of the aluminum shell must not exceed the maximum temperature. OP-APproductsduringtheprocessofreflowheatingtemperatureshouldincrease to more than 200 °C If the reflow condition temperature or duration is greater than the above table, the OP-CAP product will be damaged. The electrostatic capacity of the product is reduced by about 50%, the leakage current is large (up to m A), and the outside of the capacitor is damaged. 									
	Recommended Land Size (see page 5)									

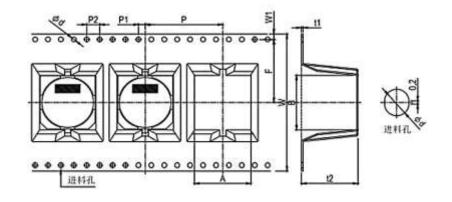


SMD CAPACITORS ALUMINUM ELECTROLYTIC FZ SERIES

TAPE (Unit: mm), Applicable standard JIS C0806 and IEC 60286.

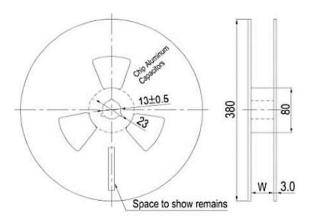
Fig. 1 (Ø4 ~ Ø10)

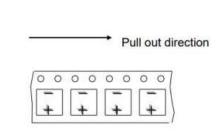
Fig. 1-1



SIZE	W	Р	F	A0	BO	t2	Ød	P1	P2	t1	W1	APPLICABLE
Ø4*5.7	12	8	5.5	4.7	4.7	5.8	1.5	2	4	0.4	1.75	Fig.1-1
Ø5*5.7	12	12	5.5	6.0	6.0	5.8	1.5	2	4	0.4	1.75	Fig.1-2
Ø6.3*5.7	16	12	7.5	7.0	7.0	5.8	1.5	2	4	0.4	1.75	Fig.1-2
Ø6.3*7.7	16	12	7.5	7.0	7.0	8.3	1.5	2	4	0.4	1.75	Fig.1-2
Ø6.3*10.2	16	12	7.5	7.0	7.0	11.0	1.5	2	4	0.4	1.75	Fig.1-2
Ø8*6.5	16	12	7.5	8.7	8.7	6.8	1.5	2	4	0.4	1.75	Fig.1-2
Ø8*10.5	24	16	11.5	8.7	8.7	11.0	1.5	2	4	0.4	1.75	Fig.1-2
Ø8*12.5	24	16	11.5	8.7	8.7	13.0	1.5	2	4	0.4	1.75	Fig.1-2
Ø10*10.5	24	16	11.5	10.7	10.7	11.0	1.5	2	4	0.4	1.75	Fig.1-2
Ø10*12.5	24	16	11.5	10.7	10.7	13.0	1.5	2	4	0.4	1.75	Fig.1-2
Ø10*13.5	24	16	11.5	10.7	10.7	13.0	1.5	2	4	0.4	1.75	Fig.1-2

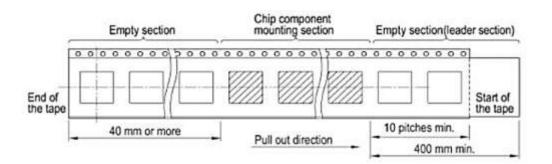
TAPE (Unit: mm), Applicable standard JIS C0806 and IEC 60286.


Fig. 1-3 (Ø12.5 ~ Ø18)



SIZE	W	Р	F	А	В	t2	Ød	P1	P2	t1	W1	APPLICABLE
Ø12.5*13.5	32	24	14.2	13.4	13.4	14.5	1.5	2	4	0.5	1.75	Fig.1-3
Ø12.5*16	32	24	14.2	13.4	13.4	17	1.5	2	4	0.5	1.75	Fig.1-3
Ø16*16.5	44	28	20.2	17.5	17.5	17.5	1.5	2	4	0.5	1.75	Fig.1-3
Ø16*21.5	44	28	20.2	17.5	17.5	22.5	1.5	2	4	0.5	1.75	Fig.1-3
Ø18*16.5	44	32	20.2	19.5	19.5	17.5	1.5	2	4	0.5	1.75	Fig.1-3

REEL (Unit: mm), Applicable standard JIS C0806 and IEC 60286.



CASE SIZE	Ø4	Ø5	Ø6.3	Ø8x6.5	Ø8x10.2 (10.5)	Ø10	Ø12.5
W (mm)	14	14	18	18	26	26	34
Qty/Reel (pcs)	2000	1000	1000	500	500	500	500

PACKING METHOD

- Polarity: Anode on the opposite side of the feed hole
- The leader length of the tape shall not be less than 400mm including 10 or more embossed sections in which no parts are contained.
- The winding core is provided with an over 40mm long empty section

APPLICATION GUIDELINE

CIRCUIT DESIGN

1) Please make sure the environmental and mounting conditions to which the capacitor will be exposed are within the conditions specified in catalogue.

2) Operating temperature and applied ripple shall be within specification.

3) Appropriate capacitors which comply with the life requirement of the products should be selected when designing the circuit.

4) Aluminum electrolytic capacitors are polar. Make sure that no reverse voltage or AC voltage is applied to the

capacitors. Please use bi-polar capacitors for a circuit that can possibly see reversed polarity.

Note: Even bi-polar capacitors cannot be used for AC voltage application.

5) Do not use aluminum electrolytic capacitors in a circuit that requires rapid and very frequent charge/ discharge.

In this type of circuit, it is necessary to use a special design capacitor with extended life characteristics.

6) Do not apply excess voltage.

(1) Please pay attention to that the peak voltage, which is DC voltage overlapped by ripple current, will not exceed the rated voltage.

(2) In the case where more than 2 aluminum electrolytic capacitors are used in series, please make sure that applied voltage will be lower than rated voltage and the voltage will be applied to each capacitor equally by using a balancing resistor in parallel with the capacitor.

7) Aluminum electrolytic capacitors shall not be used under the following environmental conditions:

(1) (a) Capacitors will be exposed to water (including condensation), brine or oil. (b) Ambient conditions that include toxic gases such as hydrogen sulfide, sulfurous acid, nitrous acid, chlorine, bromine, methyl bromide, ammonium, etc. (c) Ambient conditions that expose the capacitor to ozone, ultraviolet ray and radiation.

(2) Severe vibration and physical shock conditions that exceed specification.


Vibration test condition: 10-55-10Hz

Vibration frequency range : 10~55~10hz

Sweep rate : 10~55~10Hz/minute

Sweep method : logarithmic

2/28/2025

Amplitude or acceleration : 1.5mm (max. Acceleration is 10G)

Direction of vibration : X, Y, Z direction

Testing time: 2 hours per each direction

Shock is not applicable normally.

If a particular condition is required, please contact our sales team.

8) The main chemical solution of the electrolyte and the separator paper used in the capacitors are combustible.

The electrolyte is conductive. When it comes in contact with the PC board, there is a possibility of pattern

corrosion or short circuit between the circuit pattern, which could result in smoking or catching fire. Do not locate

any circuit pattern beneath the capacitor end seal.

9) Do not design a circuit board that the heat generating components are placed near the aluminum electrolytic capacitor or on the reverse side of PC board, if that just under the capacitor.

10) Electrical characteristics may vary depending on changes in temperature and frequency. Please consider this variation when you design circuits.

11) When you install more than 2 capacitors in parallel, please consider the balance of current flowing into the capacitors.

12) While mounting capacitors on double-side PC board, the capacitors should be away from those unnecessary base plate holes and connection holes.

MOUNTING

1) Once a capacitor has been assembled in the set and power applied, do not attempt to re-use the capacitor in other circuits or application.

2) Leakage current of the capacitors that have been stored for more than 2 years may increase. When leakage current has increased, please perform a voltage treatment using a $1k\Omega$ resistor.

3) Please confirm specifications and polarity before installing capacitors on the PC board.

4) Do not drop capacitors on the floor, nor use a capacitor that was dropped.

5) Do not deform the capacitor during installation.

6) Please pay attention to the mechanical shock to the capacitor by suction nozzle of the automatic insertion

machine or automatic mounter, or by product checker, or by centering mechanism.

REFLOW SOLDERING

1) Please follow "Reflow Soldering Conditions" when use the part.

2) When an infrared heater is used, please pay attention to the extent of heating since the absorption rate of

infrared will vary due to difference in the color and size of the capacitor.

3) Do not tilt lay down or twist the capacitor body after the capacitor are soldered to the PC board.

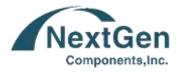
4) Do not carry the PC board by grasping the soldered capacitor.

5) Please do not allow anything to touch the capacitor after soldering. If PC boards are stored in stack, please make sure the PC board or other components away from the capacitor.

6) The capacitors shall not be effected by any radiated heat from the soldered PC board or other components after soldering.

- 7) Cleaning:
- (a) Do not clean capacitors with halogenated cleaning agent. However, if it is necessary to clean with halogenated cleaning agent, please contact our sales team.
- (b) Recommended cleaning method

Applicable : Any type, any ratings


Cleaning conditions: Total cleaning time shall be within 2 minutes by immersion, ultrasonic or other methods. Temperature of the cleaning agents shall be 40°C or below. After cleaning, capacitors should be dried by using hot air for the minimum 10 minutes along with the PC board mounted. Hot air temperature should be within the maximum operating temperature of the capacitor. Insufficient dryness after water rinse may cause appearance problems, such as bottom-plate bulge and etc.;

Avoid using ozone destructive substances as cleaning agents for protecting global environment.

IN THE EQUIPMENT

1) Do not directly touch terminal by hand.

2/28/2025

2) Do not link positive terminal and negative terminal by conductor, nor spill conductible liquid such as alkaline or acidic solution on or near the capacitor.

3) Please make sure that the ambient conditions where the set is installed are free from spilling water or oil, direct sunlight, ultraviolet rays, radiation, poisonous gases, vibration or mechanical shock.

MAINTENANCE AND INSPECTION

Please periodically inspect the aluminum capacitors that are installed in industrial equipment. The following items should be checked:

Appearance: remarkable abnormality such as pressure relief vent opening, electrolyte leaking, etc.

Electrical characteristics: capacitance, dielectric loss tangent, leakage current and etc., which are specified in

catalogue or alternate product specification.

IN AN EMERGENCY

1) If you see smoke due to operation of safety vent, please turn off the main switch or pull out the plug from the outlet.

2) If you breathe the gas or ingest the electrolyte, please wash out your mouth and throat with water immediately.

3) If your skin is exposed to the electrolyte, please wash it away using soap and water.

STORAGE

1) Do not keep capacitor in high temperature and high humidity atmosphere. Storage conditions should be:

Temperature: 5°C~ 35°C Humidity : lower than 75% Place : Indoor

2) Avoid ambient conditions where capacitors are covered with water, brine or oil.

3) A storage products for longer than 12 months is not recommended. Within other effects, the terminals may suffer degradation, resulting in bad solderability. All products shall be used within the period of 12 months based on the day of shipment

DISPOSAL

Please take either of the following methods in disposing capacitors.

1) Incinerate them after crushing capacitors or making a hole on the capacitor body.

2) If incineration is not applicable, hand them over to a waste disposal agent and have them buried in landfills.

2/28/2025

IMPORTANT NOTES AND DISCLAIMER

- ROHS COMPLIANCE: The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU RoHS Directive (EU) 2015/863 EC (RoHS3). RoHS Test Report for this product can be obtained at Download Center.
- REACH COMPLIANCE: REACH substances of high concern (SVHCs) information is available for this product.
 Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, REACH Test Report for this product can be obtained at Download Center.
- 3. All Product parametric performance is indicated in the Electrical Characteristics for the listed herein test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
- 4. NextGen Component, Inc (*NextGen*) reserves the right to make changes to this document and its products and specifications at any time without notice. Customers should obtain and confirm the latest product information and specifications before final design, purchase or use.
- 5. NextGen makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, not does NextGen assume any liability for application assistance or customer product design.
- 6. NextGen does not warrant or accept any liability with products which are purchased or used for any unintended or unauthorized application. No license is granted by implication or otherwise under any intellectual property rights of NextGen.
- 7. NextGen products are not authorized for use as critical components in life support devices or systems without express written approval by NextGen.
- 8. NextGen requires that customers first obtain an RMA (Returned Merchandise Authorization) number prior to returning any products. Returns must be made within 30 days of the date of invoice, be in the original packaging, unused and like-new condition. At the time of quoting or purchasing, a product may say that it is Non-Cancelable/ Non-Returnable (NCNR). These products are not returnable and not refundable.